UUCMS NO

B.M.S COLLEGE FOR WOMEN AUTONOMOUS BENGALURU -560004 END SEMESTER EXAMINATION – APRIL/ MAY 2023 M.Sc. Mathematics – I Semester TOPOLOGY – I

Course Code MM103T Duration : 3 Hours

QP Code: 11003 Maximum Marks: 70

Instructions: 1) **All** questions carry **equal** marks. 2) Answer **any five** questions

- a) Define an infinite set. Let X be an infinite set and let x₀ ∈ X, then prove that X {x₀} is infinite.
 b) Prove that a set X is finite if and only if either X = Ø or X is in one-to-one correspondence with some N_k = {1,2,...k} set of all natural numbers from 1 to k.
 - (6 + 8)

(6+5+4)

- 2. a) Prove that set of real numbers is uncountable.
 - b) Prove that for any set X, $\overline{\overline{P(X)}} = 2^{\overline{X}}$.
 - c) With usual notations, prove that $2^{\aleph_0} = c$.
- 3. a) Define metric space. Suppose (X, d) is a metric space, let d₁(x, y) = d(x,y)/(1+d(x,y)) be defined on X × X. Prove that d₁ is a metric on X.
 b) Prove that every closed subspace of a complete metric space is complete.

(8+6)

4. a) State and prove Cantor's intersection theorem.b) Prove that every complete metric space is of the second category.

(7 + 7)

5. a) Define topological space. Prove that every metric space is a topological space.
b) Define (i) neighbourhood of a point (ii) limit point of a set. Let A ⊆ (X, T) then prove that A ∪ D(A) is closed, where D(A) is derived set of A.

(7 + 7)

6. a) Define interior and boundary of a set. Prove that (A')⁰ = (Ā)'.
b) Prove that Ā = A ∪ b(A).

(8 + 6)

7. a) Given a function $f: X \to Y$, show that f is continuous if and only if the inverses of every closed set is closed.

b) Define homeomorphism. Show that a bijective function $f: X \to Y$ is a homeomorphism if and only if $f(\overline{A}) = \overline{f(A)}$, $\forall A \subseteq X$.

8. a) Prove that the following are equivalent

- i. X is connected.
- ii. X and \emptyset are the only sets which are both open and closed.
- iii. *X* is not the union of two non-empty disjoint open sets.
- iv. X is not the union of two non-empty disjoint closed sets.

b) Let *C* be a connected subset of (X, \mathcal{T}) where *X* has a separation $X = A \cup B$, then prove that $C \subseteq A$ or $C \subseteq B$. (6 + 8)

(7 + 7)